On matrices with displacement structure: generalized operators and faster algorithms

نویسندگان

  • Alin Bostan
  • Claude-Pierre Jeannerod
  • Christophe Mouilleron
  • Éric Schost
چکیده

For matrices with displacement structure, basic operations like multiplication, inversion, and linear system solving can all be expressed in terms of the following task: evaluate the product AB, where A is a structured n × n matrix of displacement rank α, and B is an arbitrary n × α matrix. Given B and a so-called generator of A, this product is classically computed with a cost ranging from O(αM (n)) to O(αM (n) log(n)) arithmetic operations, depending on the type of structure of A; here, M is a cost function for polynomial multiplication. In this paper, we first generalize classical displacement operators, based on block diagonal matrices with companion diagonal blocks, and then design fast algorithms to perform the task above for this extended class of structured matrices. The cost of these algorithms ranges from O(αM (n)) to O(αM (n) log(n)), with ω such that two n × n matrices over a field can be multiplied using O(n) field operations. By combining this result with classical randomized regularization techniques, we obtain faster Las Vegas algorithms for structured inversion and linear system solving.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Matrices with Displacement Structure:

For matrices with displacement structure, basic operations like multiplication, in4 version, and linear system solving can all be expressed in terms of the following task: evaluate the 5 product AB, where A is a structured n × n matrix of displacement rank α, and B is an arbitrary 6 n × α matrix. Given B and a so-called generator of A, this product is classically computed with a 7 cost ranging ...

متن کامل

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

Bunch-Kaufman Pivoting for Partially Reconstructible Cauchy-like Matrices, with Applications to Toeplitz-like Linear Equations and to Boundary Rational Matrix Interpolation Problems

In an earlier paper [GKO95] we exploited the displacement structure of Cauchy-like matrices to derive for them a fast O(n) implementation of Gaussian elimination with partial pivoting. One application is to the rapid and numerically accurate solution of linear systems with Toeplitzlike coe cient matrices, based on the fact that the latter can be transformed into Cauchy-like matrices by using th...

متن کامل

Linear Operators on Matrices: Preserving Spectrum and Displacement Structure

In this paper we characterize those linear operators on general matrices that preserve singular values and displacement rank. We also characterize those linear operators on Hermitian matrices that preserve eigenvalues and displacement inertia.

متن کامل

New Approach for the Inversion of Structured Matrices via Newton’s Iteration

Newton’s iteration is a fundamental tool for numerical solutions of systems of equations. The well-known iteration ( ) 1 2 , 0 i i i X X I MX i + = − ≥ rapidly refines a crude initial approximation 0 X to the inverse of a general nonsingular matrix. In this paper, we will extend and apply this method to n n × structured matrices M , in which matrix multiplication has a lower computational cost....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2017